

VIVEK TUTORIALS

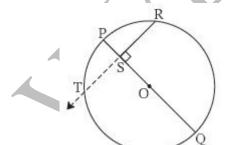
Preliminary Examination

Std: SSC (E.M) Date : 23/Jan/2020

Subject: Mathematics II

Time: 2 Hours Max Marks: 40

(i) All questions are compulsory.


- (ii) Use of calculator is not allowed.
- (iii) Total marks are shown on the right side of the question.

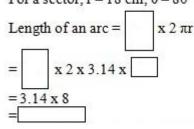
Q.1(A) Choose the correct alternative:

- (1) $\triangle ABC$ is such that AB = 3 cm, BC = 2 cm and CA = 2.5 cm. If $\triangle DEF \sim \triangle ABC$ and EF = 4 cm, then perimeter of $\triangle DEF$ is
 - (a) 7.5 cm (b) 15 cm (c) 22.5 cm (d) 30 cm
- (2) Tangents drawn from two ends of a diameter are _____(a) parallel (b) intersecting (c) non-planer (d) skew
- (3) If the area of a sector of a circle is 5/18 of the area of the circle, then the sector angle is equal to
 (a) 60° (b) 90° (c) 100° (d) 120°
- (4) Distance of point (-3,4) from the origin is _____ (A) 7 (B) 1 (C) 5 (D) -5
- (B) Solve the following:

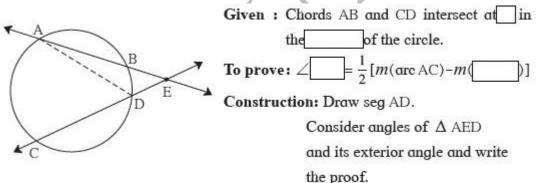
(1) In below figure AE
$$\perp$$
 seg BC, seg DF \perp line BC, AE = 4, DF = 6, then find
A(\land ABC)

(2) In figure below, seg PQ is a diameter of a circle with centre O. R is any point on the circle. seg RS \perp seg PQ. Prove that, SR is the geometric mean of PS and SQ. [That is, SR² = PS x SQ]

- (3) Prove the following: $\tan^4 \theta + \tan^2 \theta = \sec^4 \theta \sec^2 \theta$
- (4) Find the distance between each of the following pairs of points: T(-3, 6), R(9, -10)

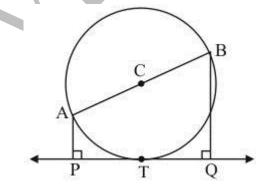

Q.2(A) Complete the following activities:(Any TWO)

(1) Find the coordinates of point P if P divides the line segment joining the points A(-1,7) and B(4,-3) in the ratio 2 : 3.

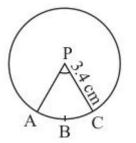

4

P(x, y) divides seg AB in the ratio 2 : 3. A(-1, 7) = (x₁, y₁) B(4, -3) = (x₂, y₂) m : n = 2 : 3 By section formula, $x = \frac{mx_2 + nx_1}{m + n}$; and $y = \frac{my_2 + ny_1}{m + n}$ $= \frac{2 x 4 + 3 x (-1)}{2 + 3}$ and $\frac{2 x \boxed{+3 x (7)}}{2 + \boxed{-3}}$ $= \frac{8 - 3}{5}$ and $\frac{-6 + \boxed{-5}}{5}$ $= \frac{5}{5}$ and $\boxed{-3}$ x = 1 and y = 3 ∴ The coordinates of point P are (1, 3).

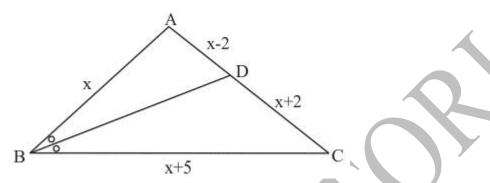
(2) Measure of an arc of a circle is 80 cm and its radius is 18 cm. Find the length of the arc. ($\pi = 3.14$) For a sector, r = 18 cm, $\theta = 80$



(3) Prove that, if two lines containing chords of a circle intersect each other outside the circle, then the measure of angle between them is half the difference in measures of the arcs intercepted by the angle.



(B) Solve the following: (Any FOUR)


- (1) Draw any circle. Take any point A on it and construct tangent at A without using the centre of the circle.
- (2) In figure below, seg AB is a diameter of a circle with centre C. Line PQ is a tangent, which touches the circle at point T. seg AP \perp line PQ and seg BQ \perp line PQ. Prove that, seg CP \cong seg CQ.

(3) In figure below, radius of circle is 3.4 cm and perimeter of sector P – ABC is 12.8 cm. Find A(P – ABC)

- (4) A metal parallelopiped of measures 16 cm x 11cm x 10 cm was melted to make coins. How many coins were made if the thickness and diameter of each coin was 2 mm and 2 cm respectively?
- (5) In $\triangle ABC$, seg BD bisects $\angle ABC$. If AB = x, BC = x + 5, AD = x 2, DC = x + 2, then find the value of x.

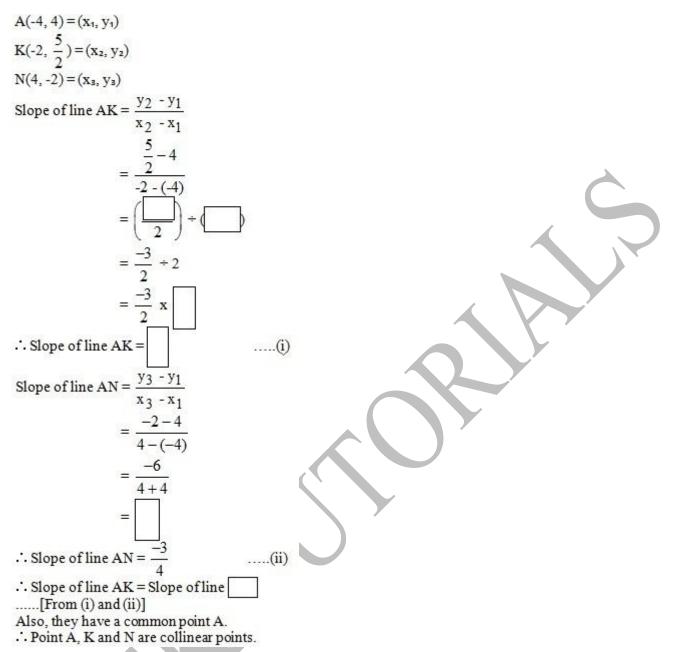
Q.3(A) Complete the following activity:(Any ONE)

 \cap

Р

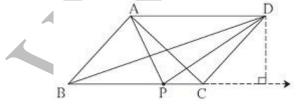
R (1) measure of $\angle PQR$ (2) m(arc PQR) (3) m(arc QR)

(4) measure of ∠PRQ


S

(1) In figure below, \Box PQRS is cyclic. Side PQ \cong side RQ. \angle PSR = 110°, Find-

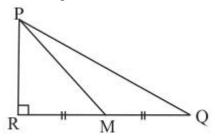
3


```
PQRS is a cyclic quadrilateral [Given]
\therefore \angle PQR + \angle PSR = 180^{\circ}
[Opposite angles of cyclic quadrilateral are
supplementary]
\therefore \angle PQR + 110^\circ = 180^\circ
\therefore \angle PQR = 180^{\circ} - 110^{\circ} =
                                         .....1
\angle PSR = \frac{1}{2} m (arc PQR)
                            [Inscribed angle theorem]
\therefore 110^\circ = \frac{1}{2} \text{ m} (\text{arc PQR})
\therefore m (arc PQR) =
                                          .....2
In \triangle PQR, side PQ \cong side RQ
                                                   [Given]
\therefore \angle PQR \cong \angle QPR
.....3 [Isosceles triangle theorem]
In \triangle PQR,
\angle PQR + \angle PRQ + \angle QPR = 180^{\circ}
[Sum of all angles of a triangle is 180°]
\therefore 70^\circ + \angle QPR + \angle QPR = 180^\circ \text{ [From 1 \& 2]}
\therefore 2 \angle QPR = 180^\circ - 70^\circ
\therefore 2 \angle QPR =
∴∠QPR=
                                       .....4
\angle QPR = \frac{1}{2} m (arc QR)
\therefore 55^\circ = \frac{1}{2} \text{ x m} (\text{arc QR})
                                       [From 3]
\therefore m (arc QR) = 110°
∠PRQ =
                           [From 3 & 4]
```

(2) Determine whether the following points are collinear: A(-4,4), K(-2, 5/2), N(4, -2)

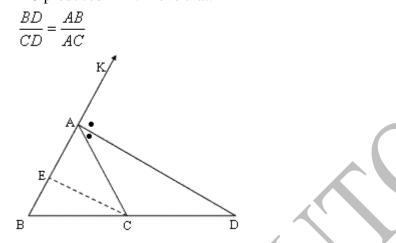
(B) Solve the following: (Any TWO)

- (1) A kite is flying at a height of 60 m above the ground. The string attached to the kite is tied at the ground. It makes an angle of 60° with the ground. Assuming that the string is straight, find the length of the string. ($\sqrt{3} = 1.73$)
- (2) ABCD is a parallelogram. P is any point on side BC. Find two pairs of triangles with equal areas.


- (3) How many solid cylinders of radius 10 cm and height 6 cm can be made by melting a solid sphere of radius 30 cm?
- (4) Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was $15\sqrt{2}$ km. Find their speed per hour.

Q.4 Solve the following: (Any TWO)

(1) In $\triangle PQR$, $\angle Q = 90^{\circ}$, seg QM is median. $PQ^2 + QR^2 = 169$. Draw a circumcircle of $\triangle PQR$.


6

- (2) Draw a circle of radius 3.4 cm and centre E. Take a point F on the circle. Take another point A such that E-F-A and FA = 4.1 cm. Draw tangents to the circle from point A.
- (3) In the figure below, M is the midpoint of QR. $\angle PRQ = 90^{\circ}$. Prove that, $PQ^2 = 4PM^2 3PR^2$.

- Q.5 Solve the following: (Any ONE)
 - (1) In the following figure, AD is the bisector of the exterior $\angle A$ of $\triangle ABC$. Seg AD intersects the side BC produced in D. Prove that:

3

(2) Prove that $(1 + \tan \theta)^2 + (1 + \cot \theta)^2 = (\sec \theta + \csc \theta)^2$.

----- All the Best ------